Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication

Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.

Marianna Pauletto, Amélie Segarra, Caroline Montagnani, Virgile Quillien, Nicole Faury, Jacqueline Le Grand, Philippe Miner, Bruno Petton, Yannick Labreuche, Elodie Fleury, Caroline Fabioux, Luca Bargelloni, Tristan Renault, Arnaud Huvet,

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s